Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(2): e0207823, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289136

RESUMO

Engineering the plant microbiome with beneficial endophytic bacteria can improve the growth, health, and productivity of the holobiont. Here, we administered two beneficial bacterial strains, Kosakonia VR04 sp. and Rhizobium GR12 sp., to micropropagated grapevine cuttings obtained via somatic embryogenesis. While both strains colonized the plant endosphere, only Rhizobium GR12 sp. increased root biomass under nutritional-deficit conditions, as supported by the plant growth promotion traits detected in its genome. Phylogenetic and co-occurrence analyses revealed that the plant native bacterial community, originally dominated by Streptococcaceae and Micrococcaceae, dramatically changed depending on the inoculation treatments, as invading strains differently affected the relative abundance and the interactions of pre-existing taxa. After 30 days of plantlets' growth, Pantoea became a predominant taxon, and considering untreated plantlets as references, Rhizobium sp. GR12 showed a minor impact on the endophytic bacterial community. On the other hand, Kosakonia sp. VR04 caused a major change in community composition, suggesting an opportunistic colonization pattern. Overall, the results corroborate the importance of preserving the native endophytic community structure and functions during plant microbiome engineering.IMPORTANCEA better comprehension of bacterial colonization processes and outcomes could benefit the use of plant probiotics in the field. In this study, we applied two different beneficial bacteria to grapevine micropropagated plantlets and described how the inoculation of these strains impacts endophytic microbiota assembly. We showed that under nutritional deficit conditions, the response of the receiving endophytic bacterial communities to the invasion of the beneficial strains related to the manifestation of plant growth promotion effects by the inoculated invading strains. Rhizobium sp. GR12 was able to preserve the native microbiome structure despite its effective colonization, highlighting the importance of the plant-endophyte associations for the holobiont performance. Moreover, our approach showed that the use of micropropagated plantlets could be a valuable strategy to study the interplay among the plant, its native microbiota, and the invader on a wider portfolio of species besides model plants, facilitating the application of new knowledge in agriculture.


Assuntos
Inoculantes Agrícolas , Filogenia , Raízes de Plantas/microbiologia , Bactérias/genética , Enterobacteriaceae , Endófitos/fisiologia
2.
Nat Commun ; 14(1): 1045, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828822

RESUMO

Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.


Assuntos
Microbiota , Bactérias , Água do Mar/microbiologia , Temperatura , Adaptação Fisiológica , Esterases/química
3.
Minerva Pediatr (Torino) ; 75(3): 387-394, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-29460551

RESUMO

BACKGROUND: Aim of the study was to collect information about emotional features in a sample of immigrant preadolescents in order to identify traits of emotional fragility or psychopathological risk factors. METHODS: The sample consists of 1206 preadolescents (180 immigrants, 1026 Italian natives) attending the third year of the middle schools. In order to assess anxiety levels and the presence of depressive symptoms the Self-Administered Psychiatric Scale (SAFA-A) and the Children's Depression Inventory (CDI) were administered. Coping strategies and behavior problems were evaluated by the Coping Inventory for Stressful Situation (CISS) and the Youth Self Report scale (YRS). All teachers filled out the Teacher's Report Form (TRF). Parents were asked to fill out a form on social-demographic features and the Multidimensional Scale of Perceived Social Support (MSPSS). RESULTS: Immigration resulted a risk factor for development of anxiety (OR=0.702), depression (OR=0.644), internalizing problems (OR=0.685), behavior problems (OR=0.622) and total problems (OR=0.719). Teachers observed more behavior problems and lower competences in immigrants than natives. Immigrants relied significantly more often on emotion-oriented coping strategies to resolve stressful situation than natives (P=0.045). Analyzing the immigrants' sample, second generation children reported significantly higher levels in total competence (school, activity and relationship) than first generation ones (P≤00.1); on the contrary there were no significant differences between the two groups concerning other behavioral and emotional problems or the preferred coping style. Natives' families reported significantly higher levels of perceived support than immigrant ones. CONCLUSIONS: Our findings confirm the hypothesis that preadolescent immigrants are more at risk for psychopathological risk factors than native peers.


Assuntos
Emigrantes e Imigrantes , Pais , Criança , Adolescente , Humanos , Emoções , Itália/epidemiologia , Transtornos de Ansiedade
4.
Sci Rep ; 12(1): 19232, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357494

RESUMO

Polychlorinated biphenyl (PCB)-contaminated soils represent a major treat for ecosystems health. Plant biostimulation of autochthonous microbial PCB degraders is a way to restore polluted sites where traditional remediation techniques are not sustainable, though its success requires the understanding of site-specific plant-microbe interactions. In an historical PCB contaminated soil, we applied DNA stable isotope probing (SIP) using 13C-labeled 4-chlorobiphenyl (4-CB) and 16S rRNA MiSeq amplicon sequencing to determine how the structure of total and PCB-degrading bacterial populations were affected by different treatments: biostimulation with Phalaris arundinacea subjected (PhalRed) or not (Phal) to a redox cycle and the non-planted controls (Bulk and BulkRed). Phal soils hosted the most diverse community and plant biostimulation induced an enrichment of Actinobacteria. Mineralization of 4-CB in SIP microcosms varied between 10% in Bulk and 39% in PhalRed soil. The most abundant taxa deriving carbon from PCB were Betaproteobacteria and Actinobacteria. Comamonadaceae was the family most represented in Phal soils, Rhodocyclaceae and Nocardiaceae in non-planted soils. Planted soils subjected to redox cycle enriched PCB degraders affiliated to Pseudonocardiaceae, Micromonosporaceae and Nocardioidaceae. Overall, we demonstrated different responses of soil bacterial taxa to specific rhizoremediation treatments and we provided new insights into the populations active in PCB biodegradation.


Assuntos
Actinomycetales , Bifenilos Policlorados , Poluentes do Solo , Solo/química , Bifenilos Policlorados/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ecossistema , Biodegradação Ambiental , Bactérias , Plantas/metabolismo , Actinomycetales/genética , Isótopos/metabolismo , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo
5.
Environ Microbiol ; 24(12): 5998-6016, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36325730

RESUMO

The pedogenesis from the mineral substrate released upon glacier melting has been explained with the succession of consortia of pioneer microorganisms, whose structure and functionality are determined by the environmental conditions developing in the moraine. However, the microbiome variability that can be expected in the environmentally heterogeneous niches occurring in a moraine at a given successional stage is poorly investigated. In a 50 m2 area in the forefield of the Lobuche glacier (Himalayas, 5050 m above sea level), we studied six sites of primary colonization presenting different topographical features (orientation, elevation and slope) and harbouring greyish/dark biological soil crusts (BSCs). The spatial vicinity of the sites opposed to their topographical differences, allowed us to examine the effect of environmental conditions independently from the time of deglaciation. The bacterial microbiome diversity and their co-occurrence network, the bacterial metabolisms predicted from 16S rRNA gene high-throughput sequencing, and the microbiome intact polar lipids were investigated in the BSCs and the underlying sediment deep layers (DLs). Different bacterial microbiomes inhabited the BSCs and the DLs, and their composition varied among sites, indicating a niche-specific role of the micro-environmental conditions in the bacterial communities' assembly. In the heterogeneous sediments of glacier moraines, physico-chemical and micro-climatic variations at the site-spatial scale are crucial in shaping the microbiome microvariability and structuring the pioneer bacterial communities during pedogenesis.


Assuntos
Camada de Gelo , Microbiologia do Solo , Camada de Gelo/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Solo/química
6.
Antibiotics (Basel) ; 11(9)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36140010

RESUMO

Antibiotic resistance spread must be considered in a holistic framework which comprises the agri-food ecosystems, where plants can be considered a bridge connecting water and soil habitats with the human microbiome. However, the study of horizontal gene transfer events within the plant microbiome is still overlooked. Here, the environmental strain Acinetobacter baylyi BD413 was used to study the acquisition of extracellular DNA (exDNA) carrying an antibiotic resistance gene (ARG) on lettuce phylloplane, performing experiments at conditions (i.e., plasmid quantities) mimicking those that can be found in a water reuse scenario. Moreover, we assessed how the presence of a surfactant, a co-formulant widely used in agriculture, affected exDNA entry in bacteria and plant tissues, besides the penetration and survival of bacteria into the leaf endosphere. Natural transformation frequency in planta was comparable to that occurring under optimal conditions (i.e., temperature, nutrient provision, and absence of microbial competitors), representing an entrance pathway of ARGs into an epiphytic bacterium able to penetrate the endosphere of a leafy vegetable. The presence of the surfactant determined a higher presence of culturable transformant cells in the leaf tissues but did not significantly increase exDNA entry in A. baylyi BD413 cells and lettuce leaves. More research on HGT (Horizontal Gene Transfer) mechanisms in planta should be performed to obtain experimental data on produce safety in terms of antibiotic resistance.

7.
AMB Express ; 12(1): 98, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35895126

RESUMO

Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.

8.
Microbiol Res ; 263: 127144, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908425

RESUMO

Studies about biodegradation potential in soils often refer to artificially contaminated and simplified systems, overlooking the complexity associated with contaminated sites in a real context. This work aims to provide a holistic view on microbiome assembly and functional diversity in the model site SIN Brescia-Caffaro (Italy), characterized by historical and uneven contamination by organic and inorganic compounds. Here, physical and chemical analyses and microbiota characterization were applied on one-hundred-twenty-seven soil samples to unravel the environmental factors driving bacterial community assembly and biodegradation potential in three former agricultural fields. Chemical analyses showed a patchy distribution of metals, metalloids and polychlorinated biphenyls (PCB) and allowed soil categorization according to depth and area of collections. Likewise, the bacterial community structure, described by molecular fingerprinting and 16S rRNA gene analyses, was significantly different according to collection site and depth. Pollutant concentrations (i.e., hexachloro-biphenyls, arsenic and mercury), nitrogen content and parameters related to soil texture were identified as main drivers of microbiota assembly, being significantly correlated to bacterial community composition. Moreover, bacteria putatively involved in the aerobic degradation of PCBs were enriched over the total bacterial community in topsoils, where the highest activity was recorded using fluorescein hydrolysis as proxy. Metataxonomic analyses revealed the presence of bacteria having metabolic pathways related to PCB degradation and tolerance to heavy metals and metalloids in the topsoil samples collected in all areas. Overall, the provided dissection of soil microbiota structure and its degradation potential in the SIN Brescia-Caffaro can contribute to target specific areas for rhizoremediation implementation. Metagenomics studies could be implemented in the future to understand if specific degradative pathways are present in historically polluted sites characterized by the co-occurrence of multiple classes of contaminants.


Assuntos
Metaloides , Bifenilos Policlorados , Poluentes do Solo , Biodegradação Ambiental , Metaloides/análise , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
9.
Appl Environ Microbiol ; 88(9): e0252221, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35416683

RESUMO

This study shows that Escherichia coli can be temporarily enriched in zooplankton under natural conditions and that these bacteria can belong to different phylogroups and sequence types (STs), including environmental, clinical, and animal isolates. We isolated 10 E. coli strains and sequenced the genomes of two of them. Phylogenetically, the two isolates were closer to strains isolated from poultry meat than to freshwater E. coli, albeit their genomes were smaller than those of the poultry isolates. After isolation and fluorescent protein tagging of strains ED1 and ED157, we show that Daphnia sp. can take up these strains and release them alive again, thus becoming a temporary host for E. coli. In a chemostat experiment, we show that this association does not prolong bacterial long-term survival, but at low abundances it also does not significantly reduce bacterial numbers. We demonstrate that E. coli does not belong to the core microbiota of Daphnia, suffers from competition by the natural Daphnia microbiota, but can profit from its carapax to survive in water. All in all, this study suggests that the association of E. coli with Daphnia is only temporary, but the cells are viable therein, and this might allow encounters with other bacteria for genetic exchange and potential genomic adaptation to the freshwater environment. IMPORTANCE The contamination of freshwater with feces-derived bacteria is a major concern regarding drinking water acquisition and recreational activities. Ecological interactions promoting their persistence are still very scarcely studied. This study, which analyses the survival of E. coli in the presence of zooplankton, is thus of ecological and water safety relevance.


Assuntos
Água Potável , Escherichia coli , Animais , Bactérias , Daphnia/microbiologia , Escherichia coli/genética , Fezes/microbiologia , Água Doce/microbiologia , Zooplâncton/microbiologia
10.
Appl Environ Microbiol ; 88(6): e0253721, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138928

RESUMO

Endophytic bacteria are key members of the plant microbiome, which phylogenetic diversity has been widely described through next-generation sequencing technologies in the last decades. On the other side, a synopsis of culturable plant endophytic bacteria is still lacking in the literature. However, culturability is necessary for biotechnology innovations related to sustainable agriculture, such as biofertilizer and biostimulant agents' development. In this review, 148 scientific papers were analyzed to establish a large data set of cultured endophytic bacteria, reported at the genus level, inhabiting different compartments of wild and farmed plants, sampled around the world from different soil types and isolated using various growth media. To the best of our knowledge, this work provides the first overview of the current repertoire of cultured plant endophytic bacteria. Results indicate the presence of a recurrent set of culturable bacterial genera regardless of factors known to influence the plant bacterial community composition and the growth media used for the bacterial isolation. Moreover, a wide variety of bacterial genera that are currently rarely isolated from the plant endosphere was identified, demonstrating that culturomics can catch previously uncultured bacteria from the plant microbiome, widening the panorama of strains exploitable to support plant holobiont health and production.


Assuntos
Bactérias , Microbiota , Endófitos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S
11.
Microbiol Spectr ; 10(1): e0158021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985334

RESUMO

Stress-associated dysbiosis of microbiome can have several configurations that, under an energy landscape conceptual framework, can change from one configuration to another due to different alternating selective forces. It has been proposed-according to the Anna Karenina Principle-that in stressed individuals the microbiome are more dispersed (i.e., with a higher within-beta diversity), evidencing the grade of dispersion as indicator of microbiome dysbiosis. We hypothesize that although dysbiosis leads to different microbial communities in terms of beta diversity, these are not necessarily differently dispersed (within-beta diversity), but they form disrupted networks that make them less resilient to stress. To test our hypothesis, we select nutrient restriction (NR) stress that impairs host fitness but does not introduce overt microbiome selectors, such as toxic compounds and pathogens. We fed the polyphagous black soldier fly, Hermetia illucens, with two NR diets and a control full-nutrient (FN) diet. NR diets were dysbiotic because they strongly affected insect growth and development, inducing significant microscale changes in physiochemical conditions of the gut compartments. NR diets established new configurations of the gut microbiome compared to FN-fed guts but with similar dispersion. However, these new configurations driven by the deterministic changes induced by NR diets were reflected in rarefied, less structured, and less connected bacterial interactomes. These results suggested that while the dispersion cannot be considered a consistent indicator of the unhealthy state of dysbiotic microbiomes, the capacity of the community members to maintain network connections and stability can be an indicator of the microbial dysbiotic conditions and their incapacity to sustain the holobiont resilience and host homeostasis. IMPORTANCE Changes in diet play a role in reshaping the gut microbiome in animals, inducing dysbiotic configurations of the associated microbiome. Although studies have reported on the effects of specific nutrient contents on the diet, studies regarding the conditions altering the microbiome configurations and networking in response to diet changes are limited. Our results showed that nutrient poor diets determine dysbiotic states of the host with reduction of insect weight and size, and increase of the times for developmental stage. Moreover, the poor nutrient diets lead to changes in the compositional diversity and network interaction properties of the gut microbial communities. Our study adds a new component to the understanding of the ecological processes associated with dysbiosis, by disentangling consequences of diets on microbiome dysbiosis that is manifested with the disruption of microbiome networking properties rather than changes in microbiome dispersion and beta diversity.


Assuntos
Ração Animal/análise , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Nutrientes/metabolismo , Simuliidae/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , Nutrientes/análise , Simuliidae/crescimento & desenvolvimento , Simuliidae/metabolismo
12.
Front Microbiol ; 12: 675552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211447

RESUMO

Global population growth and climate change raise a challenge to agriculture, which, combined with the issues concerning the use of chemical fertilizers, have generated increasing attention in the use of plant-associated bacteria as a sustainable strategy in agri-food systems. The objective of this study is to evaluate the ability of five bacterial strains, previously isolated from the rhizosphere or endosphere of plants adapted to harsh environmental conditions, to act as potential plant biofertilizers in different conditions of water availability. The strain biosafety for a deliberate environmental release was investigated through a literature survey and antibiotic resistance testing. The selected strains were first characterized for their plant growth-promoting (PGP) and rhizocompetence-related traits through in vitro assays and then on short-term in vivo experiments on tomato plants. A long-term greenhouse experiment was further conducted to monitor the PGP effect of the bacteria during the entire life cycle of tomato plants subjected to full irrigation or to severe water deficit conditions, aiming to assess their actual effect on plant productivity, which is the ultimate target of the agricultural sector. Some of the strains showed a potential in improving water use efficiency and mitigating plant water stress. Under severe irrigation deficit, four of the tested strains, Micrococcus yunnanensis M1, Bacillus simplex RP-26, Pseudomonas stutzeri SR7-77, and Paenarthrobacter nitroguajacolicus 2-50, significantly increased the number of productive plants in comparison to non-bacterized control ones. Two of them, Bacillus simplex RP-26 and Paenarthrobacter nitroguajacolicus 2-50, demonstrated also, under full irrigation, to significantly improve the water productivity in comparison with non-bacterized plants. Despite all the strains showed promising PGP potential in short-term assays, the positive effect of the bacterial inoculants on plant physiology and fruit yield was observed in some cases but never corroborated by statistical significance. These results highlight the importance of performing long-term in vivo experiments to define the real PGP ability of a bacterial inoculant to positively impact plant production.

13.
Environ Microbiol ; 23(10): 5690-5703, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139059

RESUMO

An open question in environmental ecology regards the mechanisms triggered by root chemistry to drive the assembly and functionality of a beneficial microbiome to rapidly adapt to stress conditions. This phenomenon, originally described in plant defence against pathogens and predators, is encompassed in the 'cry-for-help' hypothesis. Evidence suggests that this mechanism may be part of the adaptation strategy to ensure the holobiont fitness in polluted environments. Polychlorinated biphenyls (PCBs) were considered as model pollutants due to their toxicity, recalcitrance and poor phyto-extraction potential, which lead to a plethora of phytotoxic effects and rise environmental safety concerns. Plants have inefficient detoxification processes to catabolize PCBs, even leading to by-products with a higher toxicity. We propose that the 'cry-for-help' mechanism could drive the exudation-mediated recruitment and sustainment of the microbial services for PCBs removal, exerted by an array of anaerobic and aerobic microbial degrading populations working in a complex metabolic network. Through this synergistic interaction, the holobiont copes with the soil contamination, releasing the plant from the pollutant stress by the ecological services provided by the boosted metabolism of PCBs microbial degraders. Improving knowledge of root chemistry under PCBs stress is, therefore, advocated to design rhizoremediation strategies based on plant microbiome engineering.


Assuntos
Microbiota , Bifenilos Policlorados , Poluentes do Solo , Biodegradação Ambiental , Poluição Ambiental , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
14.
Sci Total Environ ; 747: 141477, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33076211

RESUMO

The agricultural areas of a historically contaminated National Relevance Site (SIN Brescia Caffaro) in Italy are an ideal case for studying the long term vertical and horizontal movement of polychlorinated biphenyls (PCBs) in soil. Here, a former large producer of PCBs (Caffaro S.p.A.) discharged its wastewaters, contaminated by PCBs and other chemicals, to a ditch used for about 80 years as source of irrigation waters for the adjacent agricultural areas. This caused a spread of contamination along both a vertical and a horizontal soil gradient. PCB concentrations of about 80 congeners, including PCB 209, peculiar of Caffaro production, were measured in three areas, selected for their different soil properties and cultivation history. The contamination levels with depth ranged from about 30 mg/kg dry weight (d.w.) of soil in the top (plow) layer to less than 0.1 mg/kg d.w. at the depth of 1 m. The concentrations varied also horizontally, since each field was surface irrigated from the short edge of each field, showing that PCBs could spread with length halving the initial concentrations in the topsoil only after about 30-35 m. The concentration gradients detected were explained considering the historic soil use and its change with time, the pedological properties as well as PCB physico-chemical parameters and halflives, developing equations which could be employed as guidance tools for evaluating PCBs (and similar chemicals) movement and direct further studies.

15.
Front Microbiol ; 11: 574301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013812

RESUMO

The diffusion of antibiotic resistance determinants in different environments, e.g., soil and water, has become a public concern for global health and food safety and many efforts are currently devoted to clarify this complex ecological and evolutionary issue. Horizontal gene transfer (HGT) has an important role in the spread of antibiotic resistance genes (ARGs). However, among the different HGT mechanisms, the capacity of environmental bacteria to acquire naked exogenous DNA by natural competence is still poorly investigated. This study aimed to characterize the ability of the environmental Escherichia coli strain ED1, isolated from the crustacean Daphnia sp., to acquire exogenous DNA by natural competence. Transformation experiments were carried out varying different parameters, i.e., cell growth phase, amount of exogenous DNA and exposition to artificial lake water (ALW) and treated wastewater to mimic environmental-like conditions that may be encountered in the agri-food system. Results were compared with those showed by the laboratory E. coli strain DH5α. Our experimental data, supported by genomic sequencing, showed that, when exposed to pure water, ED1 strain was able to acquire exogenous DNA with frequencies (10-8-10-9) statistically higher than the ones observed for DH5α strain (10-10). Interestingly, higher values were retrieved for ED1 than DH5α strains exposed to ALW (10-7 vs. 10-9, respectively) or treated wastewater (10-8 vs. 10-10, respectively). We tested, therefore, ED1 strain ability to colonize the rhizosphere of lettuce, a model plant representative of raw-consumed vegetables of high economic importance in the ready-to-eat food industry. Results showed that ED1 strain was able to efficiently colonize lettuce rhizosphere, revealing a stable colonization for 14 days-long period. In conclusion, ED1 strain ability to acquire exogenous DNA in environmental-like conditions by natural competence, combined with its ability to efficiently and stably colonize plant rhizosphere, poses the attention to food and human safety showing a possible route of diffusion of antibiotic resistance in the agri-food system, sustaining the "One Health" warnings related to the antibiotic spread.

16.
Environ Sci Technol ; 54(16): 10000-10011, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32687327

RESUMO

In this paper, a new data set of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) half-lives (HLs) in soil is presented. Data are derived from a greenhouse experiment performed with an aged contaminated soil under semi-field conditions, obtained from a National Relevance Site (SIN) located in Northern Italy (SIN Brescia-Caffaro). Ten different treatments (combination of seven plant species with different soil conditions) were considered together with the respective controls (soil without plants). The ability of the plants to stimulate the biodegradation of these compounds was evaluated by measuring the PCDD/F concentration reduction in soil over a period of 18 months. The formation of new bound residues was excluded by using roots as a passive sampler of bioaccessible concentrations. The best treatment which significantly reduced PCDD/F concentrations in soil was the one with Festuca arundinacea (about 11-24% reduction, depending on the congener). These decreases reflected in HLs ranging from 2.5 to 5.8 years. Simulations performed with a dynamic air-vegetation-soil model (SoilPlusVeg) confirmed that these HLs were substantially due to biodegradation rather than other loss processes. Because no coherent PCDD/F degradation HL data sets are currently available for soil, they could substantially improve the predictions of soil remediation time, long-range transport, and food chain transfer of these chemicals using multimedia fate models.


Assuntos
Dibenzodioxinas Policloradas , Poluentes do Solo , Dibenzofuranos , Dibenzofuranos Policlorados/análise , Monitoramento Ambiental , Itália , Dibenzodioxinas Policloradas/análise , Solo , Poluentes do Solo/análise
17.
Microb Ecol ; 80(4): 822-836, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32583006

RESUMO

The microbiota associated to xerophyte is a "black box" that might include microbes involved in plant adaptation to the extreme conditions that characterize their habitat, like water shortage. In this work, we studied the bacterial communities inhabiting the root system of Argania spinosa L. Skeels, a tree of high economic value and ecological relevance in Northern Africa. Illumina 16S rRNA gene sequencing and cultivation techniques were applied to unravel the bacterial microbiota's structure in environmental niches associated to argan plants (i.e., root endosphere, rhizosphere, root-surrounding soil), not associated to the plant (i.e., bulk soil), and indirectly influenced by the plant being partially composed by its leafy residue and the associated microbes (i.e., residuesphere). Illumina dataset indicated that the root system portions of A. spinosa hosted different bacterial communities according to their degree of association with the plant, enriching for taxa typical of the plant microbiome. Similar alpha- and beta-diversity trends were observed for the total microbiota and its cultivable fraction, which included 371 isolates. In particular, the residuesphere was the niche with the highest bacterial diversity. The Plant Growth Promotion (PGP) potential of 219 isolates was investigated in vitro, assessing several traits related to biofertilization and biocontrol, besides the production of exopolysaccharides. Most of the multivalent isolates showing the higher PGP score were identified in the residuesphere, suggesting it as a habitat that favor their proliferation. We hypothesized that these bacteria can contribute, in partnership with the argan root system, to the litter effect played by this tree in its native arid lands.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Raízes de Plantas/microbiologia , Rizosfera , Sapotaceae/microbiologia , Microbiologia do Solo , Marrocos , Árvores/microbiologia
18.
Chemosphere ; 241: 124843, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31605997

RESUMO

Climate changes push for water reuse as a priority to counteract water scarcity and minimize water footprint especially in agriculture, one of the highest water consuming human activities. Phytodepuration is indicated as a promising technology for water reclamation, also in the light of its economic and ecological sustainability, and the use of specific bacterial inocula for microbial assisted phytodepuration has been proposed as a further advance for its implementation. Here we provided an overview on the selection and use of plant growth promoting bacteria in Constructed Wetland (CW) systems, showing their advantages in terms of plant growth support and pollutant degradation abilities. Moreover, CWs are also proposed for the removal of emerging organic pollutants like antibiotics from urban wastewaters. We focused on this issue, still debated in the literature, revealing the necessity to deepen the knowledge on the antibiotic resistance spread into the environment in relation to treated wastewater release and reuse. In addition, given the presence in the plant system of microhabitats (e.g. rhizosphere) that are hot spot for Horizontal Gene Transfer, we highlighted the importance of gene exchange to understand if these events can promote the diffusion of antibiotic resistance genes and antibiotic resistant bacteria, possibly entering in the food production chain when treated wastewater is used for irrigation. Ideally, this new knowledge will lead to improve the design of phytodepuration systems to maximize the quality and safety of the treated effluents in compliance with the 'One Health' concept.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Purificação da Água/métodos , Áreas Alagadas , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Águas Residuárias/química
19.
Microorganisms ; 7(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554215

RESUMO

The microbiome associated with plants used in phytodepuration systems can boost plant growth and services, especially in ecosystems dealing with recalcitrant compounds, hardly removed via traditional wastewater (WW) treatments, such as azo-dyes used in textile industry. In this context, we aimed to study the cultivable microbiome selected by Phragmites australis plants in a Constructed Wetland (CW) in Morocco, in order to obtain candidate inoculants for the phytodepuration of azo-dye contaminated WW. A collection of 152 rhizospheric and endophytic bacteria was established. The strains were phylogenetically identified and characterized for traits of interest in the phytodepuration context. All strains showed Plant Growth Promotion potential in vitro and 67% of them significantly improved the growth of a model plant in vivo compared to the non bacterized control plants. Moreover, most of the isolates were able to grow in presence of several model micropollutants typically found in WW, indicating their potential use in phytodepuration of a wide spectrum of effluents. The six most promising strains of the collection were tested in CW microcosms alone or as consortium: the consortium and two single inocula demonstrated to significantly increase the removal of the model azo-dye Reactive Black 5 compared to the non bacterized controls.

20.
PLoS One ; 14(8): e0221253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437185

RESUMO

Extended soil contamination by polychlorinated biphenyls (PCBs) represents a global environmental issue that can hardly be addressed with the conventional remediation treatments. Rhizoremediation is a sustainable alternative, exploiting plants to stimulate in situ the degradative bacterial communities naturally occurring in historically polluted areas. This approach can be enhanced by the use of bacterial strains that combine PCB degradation potential with the ability to promote plant and root development. With this aim, we established a collection of aerobic bacteria isolated from the soil of the highly PCB-polluted site "SIN Brescia-Caffaro" (Italy) biostimulated by the plant Phalaris arundinacea. The strains, selected on biphenyl and plant secondary metabolites provided as unique carbon source, were largely dominated by Actinobacteria and a significant number showed traits of interest for remediation, harbouring genes homologous to bphA, involved in the PCB oxidation pathway, and displaying 2,3-catechol dioxygenase activity and emulsification properties. Several strains also showed the potential to alleviate plant stress through 1-aminocyclopropane-1-carboxylate deaminase activity. In particular, we identified three Rhodococcus strains able to degrade in vitro several PCB congeners and to promote lateral root emergence in the model plant Arabidopsis thaliana in vivo. In addition, these strains showed the capacity to colonize the root system and to increase the plant biomass in PCB contaminated soil, making them ideal candidates to sustain microbial-assisted PCB rhizoremediation through a bioaugmentation approach.


Assuntos
Proteínas de Bactérias/genética , Phalaris/microbiologia , Raízes de Plantas/microbiologia , Bifenilos Policlorados/metabolismo , Rhodococcus/genética , Poluentes do Solo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Catecol 2,3-Dioxigenase/genética , Catecol 2,3-Dioxigenase/metabolismo , Expressão Gênica , Oxirredução , Phalaris/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Rhodococcus/enzimologia , Metabolismo Secundário/genética , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...